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This paper presents an analytical model for the dynamic analysis of thin cylindrical shells
partially filled with liquid. The method used is a combination of finite element analysis and
classical shell theory, and the objective is to determine the specific displacement functions
which best represent the real deformations. The effect of oscillations of the free surface of
the liquid on fluid-shell vibration is studied, and consideration is given to the influence of
such parameters as: the circumferential mode, the axial mode, the structural damping, the
length of the shell and the forces induced by the liquid. The shell is divided into cylindrical
finite elements and the displacement functions are derived using Sander’s thin shell theory.
The stiffness and mass matrices of the shell are derived analytically. For the liquid
contained in the shell, boundary conditions are prescribed and the behaviour of the liquid
is expressed by a potential function. The kinetic and potential energies of the liquid are
evaluated in order to establish the influence of surface oscillation on fluid-shell vibration.
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1. INTRODUCTION

As thin shells are used in a variety of applications, they continue to arouse the interest
of researchers who study their behaviour under dynamic and static loads. Thin shells are
commonly used in the aeronautical industry, in the generation of nuclear energy and in
the construction industry. Cylindrical shapes are also widely used in various forms as
pressurised containers, pipes, and structural components.

The presence of a liquid inside a shell has an important influence on the dynamic
behaviour of the structure and can create problems which are difficult to solve. In the
design of liquid-filled structures, the calculation of the natural frequencies of the system
is a preliminary step in the dynamic analysis.

Numerous researchers have studied the hydrodynamic coupling between the liquid and
the structure using three forces: inertial, Coriolis and centrifugal. The term inertial is used
to designate the virtual mass added to the mass of the structure. Among the studies carried
out in the field of fluid–shell interaction, one can isolate several principal phenomena:
hydrodynamic coupling, free surface motion of the liquid or ‘‘sloshing’’, and vibrations
occurring when the liquid is flowing.

In the case of shells partially filled with liquid, free surface motion may be coupled to
shell motion [1]. The latter case is of importance in the propellant tanks of liquid-propelled

0022–460X/97/420175+31 $25.00/0/sv971074 7 1997 Academic Press Limited



. .   . .176

rockets and has received considerable attention. Other effects of the coupled fluid–shell
motion occur when the fluid is flowing. Depending on the boundary conditions, buckling
and flutter instabilities are possible in the beam modes of the shell [2, 3], and also in the
shell modes [4], at sufficiently high flow velocities.

The first studies—and those which constitute the basic theories for the behaviour of a
liquid inside a cylindrical, spherical or other shell, date from the 19th century and can be
found in the works of Rayleigh and Lamb [5]. After World War II, technological and
scientific advances gave a new impetus to this field as programs were developed for research
into space flight.

Prominent among the studies of the 1960s was that of Berry and Reissner [6], who
studied the behaviour of a pressurised liquid inside a cylindrical shell. The two researchers
employed thin shell theory for cylindrical shells to investigate the static internal pressure
load, the inertia of the shell due to radial movement and the inertia of the liquid due to
the mass of the pressurised liquid. Lindholm et al. [1] analysed the vibrations of thin shells
partially filled with liquid in the case of unpressurised cylindrical shells. It is necessary to
consider also the work of Coale and Nagano [7], who studied the case of a cylindrical shell
joined to a spherical shell, both filled with liquid.

More recently, Lakis et al. [8–12] studied the effects of the pressure and flow of internal
or external liquid on the dynamics of thin shells. Bauer [13] studied the effects of an elastic
surface cover on the vibrations of a rigid shell partially filled with liquid. Yamaki et al.
[14] and Mazúch et al. [15] investigated the dynamic of cylindrical shell partially filled with
liquid in the cases of clamped–clamped and clamped–free shells, respectively. On the other
hand, Gonçalves and Ramos [16] developed a model for evaluating the free vibration of
circular cylindrical shells partially filled with liquid by solving Sanders’ shell equation using
the Galerkin error minimization procedure.

2. THEORY

2.1.  

In this paper the authors concentrate exclusively on the theoretical determination of the
free vibration characteristics of thin, circular shells, partially or completely filled with
liquid. The shell may be uniform or axially non-uniform. Only the so-called ‘‘breathing’’
modes of the shell will be considered (ne 2). It should be noted that the lowest frequencies
are not generally associated with n=0, axisymmetric, and n=1, beam-like. Deformations
in these modes involve more strain energy than some of those with ne 2. For more details,
see Lakis and Sinno [17].

The finite element chosen is a cylindrical frustum, rather than the more usual triangular
or rectangular flat plate elements. This allows us to use the shell equations in full for the
determination of the displacement functions. For partially filled cylindrical shells, the shell
is divided into its empty and full parts, and each is subdivided into a number of finite
elements. The analysis for an empty finite element will be first presented and then modified
for a fluid-filled element.

The displacement functions are determined by Sanders’ theory for thin cylindrical shells
[18, 19], rather than by, for example, Love’s or Timoshenko’s theories, for the following
reason: in Sanders’ theory all strains vanish for small rigid-body motion, which is not true
for the other theories [20]; accordingly, the displacement functions based on Sanders’
theory may be expected to satisfy the convergence criterion of the finite-element method
stating that strains within the element should be zero when the nodal displacements are
generated by rigid-body motion.
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The dynamic behaviour of the system is governed by the equation of motion

([M0]− [Mf ]{D� }−[Cf ]{D� }+([K0]− [Kf ]){D}= {F(t)}, (1)

where [M0] and [K0] represent the mass and stiffness matrices of the solid shell (see Lakis
and Paidoussis [10]), [Mf ], [Cf ] and [Kf ] are the matrices associated with the inertia, Coriolis
and centrifugal forces, respectively, and represent the effect of the liquid on the shell (see
reference [11]). {F(t)} is the vector of the forces due to a random pressure field (see
reference [12]); and D= {d1, d2, . . . , dN+1}T where dN+1 is the displacement vector
associated with the second node of the last finite element. A list of symbols appears in
Appendix B.

In the case of liquid at rest, the matrices [Cf ], [Kf ] and {F(t)} are null and equation (1)
takes the form

([M0]− [Mf ]){D� }+[K0]{D}= {0}. (2)

In equations (1) and (2), the effects induced by the free surface of the liquid have been
ignored. In order to account for them, a mass matrix for the surface in movement and
a stiffness matrix for the change in potential of the liquid due to the height of the waves
will be added:

([M0]− ([Mf ]+ [Mfs ])){D� }+([K0]− [Kfs ]){D}= {0}. (3)

Finally, with the notations [MF ]=−[Mf ]− [Mfs ] and [KF ]=−[Kfs ] one finds the
following equation of motion for the dynamic behaviour of the system:

([M0]+ [MF ]){D� }+([K0]+ [KF ]){D}= {0}. (4)

The matrices [M0], [K0] have previously been calculated by Lakis et al. [10]. In this study,
therefore, matrices [MF ] and [KF ] are developed to model the behaviour of the liquid taking
into account the free surface motion. Then, to analyse the effect of the surface oscillations,
one compares the results obtained by this method with those obtained by Lakis and
Paidoussis [11], who did not take the free surface effects into account.

In this work, the influence of various parameters, such as: the circumferential and axial
modes, the structural damping, the length of the shell and the inertial forces induced by
the liquid and its free surface is considered.

For a thin cylindrical shell specific displacement functions using shell theory are
calculated. Using these results in conjunction with finite element analysis, one finds the
mass and stiffness matrices of the solid shell and the equations of motion. Taking into
account the impermeability conditions of the fluid-structure interface, the behaviour of the
liquid element is expressed using a potential function. The kinetic and potential energies
of the liquid mass are calculated in order to determine the effect of the liquid of the motion
of the free surface on the fluid-shell vibrations.

2.2.  

A cylindrical finite element is used, which is bounded at its extremities by two circular
nodes i and j (Figures 1, 2 and 3). The displacement functions can be expressed in a general
form as

8U(x, u)
V(x, u)
W(x, u)9=[N]6di

dj7, (5)
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Figure 1. Cylindrical shell with differential element.

where the elements of matrix [N] are a function of the position and of the anisotropy of
the shell, and where the vector {didj}T represents the nodal displacements.

To study the equilibrium of the cylindrical shell while taking into account the effects
of the membrane and also of the bending of the mean surface, Sanders’ first order
equations [21] are used. These equations are based on Love’s first approximation and
permit zero deformations in the case of small movements of the rigid body, which is not
the case with other theories. The equilibrium equations for thin cylindrical shells are given
in Appendix A.1.

Figure 2. Division of the shell.
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Figure 3. Displacements and degrees of freedom at a node.

The general shape of the displacement functions (in cylindrical co-ordinates in the axial,
tangential and radial directions, taking account of their periodicity in the circumferential
direction) is given by

U= s
n

un (x) cos nu, V= s
n

vn (x) sin nu, W= s
n

wn (x) cos nu, (6)

where n is the number of circumferential modes, x is the co-ordinate along the axis of the
cylinder, and u is the co-ordinate in the circumferential direction. For the axial direction
one assumes

un (x)=A elx/r, vn (x)=B elx/r, wn (x)=C elx/r, (7)

where r is the average shell radius and A, B, C and l are complex numbers.
When the given displacement functions are replaced by equations (5) and (6) in the

equilibrium equations (see Appendix A.1., equations (A.4–6), one obtains a three-equation
linear system:

[H]8ABC9=0. (8)

For the non-trivial solution, the determinant of matrix [H] must vanish, which gives one
a characteristic eighth order equation in l:

h8l
8 + h6l

6 + h4l
4 + h2l

2 + h0 =0, (9)

where the matrix [H] is given in Appendix A and the terms hi (i=0, 2, 4, 6 and 8) are given
in reference [10]. The solution of equation (9) gives the values of li (i=1–8).

Each value of li constitutes a solution of the equilibrium equations and the complete
solution is a linear combination of those equations with constant Aj , Bj and Cj , where j
varies from 1–8.

Since Aj , Bj and Cj are not independent, one expresses Aj and Bj as a function of Cj ,
using complex constants aj and bj :

Aj = ajCj , Bj = bjCj . (10)
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The final shape of the matrix can therefore be written as follows (for more details, see
Lakis and Paidoussis [10]):

8UVW9=[T][R]{C}, (11)

where [T] and [R] are (3×3) and (3×8) matrices and are given in Appendix A. The vector
{C} contains the only free constants of the problem, which are expressed as a function
of the nodal displacements of the elements,

C�1

C�2

{C}=g
G

G

F

f

···
h
G

G

J

j

. (12)

C�8

The displacements of node i are defined by the vector

uni

wni

{di}=g
G

G

F

f
(dwn /dx)i

h
G

G

J

j

. (13)

vni

All the components of vector {di} represent the magnitude of the displacements
U, W, dW/dx and V associated with the circumferential mode n. Each element has two
nodes and eight degrees of freedom (see also Figure 3):

uniF J
G Gwni

G G(dwn /dx)iG G
di vnij f~

_ dj

_
~=

unj
=[A]{C}. (14)J F

G Gwnj

G G(dwn /dx)jG G
vnjf j

The terms of matrix [A] are obtained from the values of matrix [R] and are given in
Appendix A.

By multiplying by [A]−1 one obtains the matrix for the constant Cj as a function of the
degrees of freedom:

{C}=[A]−16di

dj7. (15)

Finally, one substitutes the vector {C} into equation (11) and obtains the displacement
functions as follows:

8UVW9=[T][R][A]−16di

dj7=[N]6di

dj7. (16)

Matrices [T], [R] and [A] are given in Appendix A.
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2.3.        

The strain vector {e} can be determined from the displacement functions U, V, W and
the deformation–displacement equations presented in Appendix A as

exF J
euG G

G G2ēxu [T][0] di diK
k

L
l

~
_

_
~

~
_

_
~g h{e} =

kx
=

[0][T]
[Q][A]−1

dj
= [B]

dj
, (17)

G G
kuG G

2k�xuf j

where matrices [T] and [Q] are also given in Appendix A.
The stress vector {s} may be expressed as a function of the strain, {e}, as

NxF J
G GNu

G GN�xu di~
_

_
~g h{s} =

Mx
=[P]{e}=[P][B]

dj
. (18)

G G
MuG G

f jM�xu

For an isotropic cylindrical shell the elasticity matrix [P] takes the form

K LD nD 0 0 0 0
G G

nD D 0 0 0 0G G
0 0 (1− n)D/2 0 0 0G G

G G[P] =
0 0 0 K nK 0

, (19)

G G0 0 0 nK K 0G G
0 0 0 0 0 (1− n)K/2k l

with the parameters D=membrane stiffness, K=bending stiffness:

K=Et3/12(1− n2), D=Et/(1− n2). (20)

For the most general case, that of an orthotropic cylindrical shell, the matrix [P] is more
complex and may be written as

K LP11 P12 0 P14 P15 0
G GP21 P22 0 P24 P25 0G G

0 0 P33 0 0 P36G G
G G[P] =

P41 P42 0 P44 P45 0
. (21)

G GP51 P52 0 P54 P55 0G G
0 0 P63 0 0 P66k l

Coefficients Pij are given in reference [22].
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The mass and stiffness matrices are then expressed as a function of equations (17) to
(21):

[k0]=gg
A

[B]T[P][B] dA, [m0]= rt gg
A

[N]T[N] dA, (22, 23)

where r is the density and t is the thickness of the shell.
The surface element of the shell wall is dA= r du dx. After integrating over u, the

preceding equations become

[k0]= pr[A−1]T0g
1

0

[Q]T[P][Q] dx1[A−1], [m0]= prrt[A−1]T0g
1

0

[R]T[R] dx1[A−1]. (24)

[k0] and [m0] were obtained analytically by carrying out the necessary matrix operations
and integrations over x in equation (24). To do this it was found necessary to introduce
several intermediate matrices, eventually obtaining expressions for the general terms kpc

and mpq of [k0] and [m0], respectively. Because of the complexity of the manipulations,
neither the intermediate steps nor the final result will be given here. See references [10] or
[23] for details.

From these equations, one can assemble the mass and stiffness matrices for each element
to obtain the mass and stiffness matrices for the whole shell: [M0] and [K0]. Each elementary
matrix is (8×8), therefore the final dimensions of [M0] and [K0] will be 4(N+1), where
N is the number of elements of the shell.

2.4.    - 

The authors consider that the dynamic behaviour of a cylindrical shell under pressure
from internal fluid is governed by the equation of motion (4). In order to analyse the
behaviour of the fluid inside the shell, a mathematical model has been developed based
on the following hypotheses: the fluid is incompressible; the motion of the fluid is
irrotational and inviscid; the energy of the fluid will be derived from the potential flow
theory; only small vibrations (linear theory) will be considered and the pressure of the fluid
inside the shell is taken to be purely radial.

Suppose one has a cylindrical fluid finite element with two nodes i and j; and for each
node the displacements are given by the vector (see Figures 3 and 4):

uni

wni

{di}=g
G

G

F

f
(dwn /dx)i

h
G

G

J

j

, (25)

vni

where uni , vni and wni are the components of the axial, radial and tangential displacements
associated with the circumferential mode n.

The equations which govern the irrotational motion of the liquid cylinder can be
expressed as a function of velocity potential f. The velocity components are given by
derivatives of the potential function. Using cylindrical co-ordinates, one has the equations

Vx = 1f/1x, Vr = 1f/1r, Vu = 1f/r 1u, (26)

where x, u and r are the co-ordinates in the axial, circumferential and radial directions
of the cylinder.
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For an incompressible fluid (r=constant) and irrotational flow, the motion is governed
by the continuity equation:

(1/r) 1/1r(r 1f/1r)+ (1/r2) 12f/1u2 + 12f/1x2 =0. (27)

The associated boundary conditions are

1f/1r =r=0 =0, (28)

which ensures a finite solution on the axis at r=0;

p=const=x= h (29)

on the free surface of the fluid; and

vr =r= a = 1w/1t. (30)

At the solid boundary the velocity of the fluid is equal to that of the wall (in the case of
an undisturbed fluid); a is the internal radius and here t indicates time.

2.5.        

To determine the influence of the free surface, one applies Bernoulli’s equation in its
general form:

p/r=−1f/1t+gx+ f(t), (31)

where f(t) is a function that varies with time t, and which will be included in the value
of 1f/1t, g is the acceleration of gravity and x is the height of the fluid required to calculate
the pressure (see Figure 4).

Let h be the height of one point on the surface at a given time t with reference to the
flat horizontal surface (see Figure 4). Since the pressure (p) is either constant or null at
the surface, Bernoulli’s equation (31) gives the value of h as

h=(1/g)[1f/1t]x=0, (32)

Figure 4. Cylindrical shell partially filled with fluid.
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where h is calculated at x=0 (see Figure 4), which is the height of the undisturbed
surface.

Therefore, one obtains

[12f/1t2 +g 1f/1x]x=0 =0. (33)

Equation (33) gives the general linear condition associated with the free surface of the
fluid.

To evaluate the influence of the surface motion on the fluid–shell vibrations, it is
necessary to develop kinetic and potential energies during vibration. This approach, which
was proposed by Lamb [5], leads us to an evaluation of the equations

T=
rF

2 gg
Ss

f
1f

1ns
ds, V= rFg ggg

V

x dv, (34, 35)

where Ss represents the upper or free surface of the fluid, ns represents the normal to the
free surface, positive outward and x represents the co-ordinate in the axial direction of
the cylinder.

For potential energy, integration in the axial direction is done between 0 and h; 0
represents the fluid at rest and h is the height of the wave (see Figure 4).

The total kinetic energy of the fluid inside the shell may be written as

T=
rF

2 ggg
V

[v2
x + v2

r + v2
u ] dv. (36)

By applying the Green–Gauss theorem to the volume integral of the kinetic energy, one
obtains

2T
rF

=ggg
V
$01f

1x1
2

+01f

1r1
2

+0 1f

r 1u1
2

% dV=g
S
g $f 1f

1n% dS−ggg
V

[f92f] dV, (37)

where S is the surface which surrounds the volume of fluid and n is the normal to this
surface, positive outward.

But the continuity equation requires that 92f=0, which cancels the last term of
equation (37), which can then be rewritten as

2T
rF

=g
S
g $f 1f

1n% dS=gg
Ss

$f 1f

1ns% dS+gg
S1

$f 1f

1n1% dS−gg
Si

$f 1f

1ni% dS, (38)

where Ss and ns are, respectively, the free surface (upper surface) and the normal to this
surface, positive outward (see Figure 4), S1 and n1 represent, respectively, the lateral surface
which surrounds the volume of fluid and the normal to this surface, positive outward and
Si and ni indicate, respectively, the lower surface (at the base) and the normal to this
surface, positive outward.

The first integral on Ss gives us the effect of the free surface motion. The second on the
lateral surface (S1) takes into account the effect of the dynamic pressure of the fluid at the
boundary. The third integral is zero when the lower surface is identical to that of the rigid
base of the solid cylinder because 1f/1ni =0 (the velocity of the surface is zero in the latter
case—see Figure 4). As far as the middle elements are concerned, the kinetic energy on
the lower surface of the upper element is cancelled out by the kinetic energy on the upper
surface of the lower element when one adds the energies of all the elements.
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Therefore, one can calculate the influence of the fluid on the shell (taking into account
the effects of the free surface as shown in equation (38)). This equation takes into account
the energies of both the free surface and the lateral surface of the fluid.

2.6.    

The solution of the continuity equation has been developed in the work cited in
references [11] and [22]. Here the case of zero velocity will be considered.

The radial displacement of the solid boundary, w, expressed by equation (16), may be
rewritten as

w= s
8

j=1

ei(lj x/a+vt) cos nu= s
8

j=1

wj (39)

and the potential function f=f(x, r, u, t) may be assumed as

f(x, r, u, t)=R(r)S(x, u, t). (40)

Using equation (39), f(x, r, u, t) can be expressed as the sum of eight components:

f(x, r, u, t)= s
8

j=1

Rj (r)Sj (x, u, t). (41)

By substituting equations (41) into the boundary condition of the shell wall given by
equation (30) and using equation (39), one obtains

f(x, r, u, t)= s
8

j=1

Rj (r)
R'j (a)

ẇj . (42)

By introducing the velocity potential into the continuity equation (27), one may write

s
8

j=1 6R0j (r)
R'j (a)

ẇnj +
R'j (r)
R'j (a)

ẇnj −
n2

r2

Rj (r)
R'j (a)

[ẇnj + ẇ0nj ]7 cos nu=0. (43)

The unknown function which remains to be determined is given by the radial variation
of R(r). This Bessel differential equation (43) presents a general solution of the form

Rj (r)=AJn (imjr)+BYn (imjr), (44)

where Jn (imjr) is the Bessel function of the first kind of order n, Yn (imjr) is the Bessel
function of the second kind of order n, A and B are constants to be determined and
mj = lj /a and lj with j=1, 2, . . . , 8 are the roots of the characteristic equation (9).

For internal flow at the centre of the cylinder at r=0, the solution should be finite, but
limr:0 Yn (imjr):−a; it is necessary therefore that B:0. Thus one arrives at the solution
to the differential equation (43):

Rj (r)=AJn (imjr). (45)

This last equation determines the variation of f in the radial direction and gives the
analytical form of the potential function

f(x, r, u, t)= s
8

j=1

Jn (imjr)
J'n (imja)

ẇj . (46)
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The general matrix shape of the radial displacement of the solid wall is known to be
(see equation (11))

w=cos nu{RF}T{C}, (47)

where the vector of the constants {C} is defined by the equation

6di

dj7=[A]{C}, (48)

and the terms of matrix [A] are obtained using the value of matrix [R] and are given in
Appendix A; the vector {RF}T is the second line of matrix [R] which therefore corresponds
to the radial displacement

{RF}T = {eil1x/a eil2x/a eil3x/a · · · eil8x/a}T. (49)

The matrix for the potential function (46) becomes

f(x, r, u, t)= cos (nu){RF}T[HF ][A−1]{q̇}, (50)

where

{q}=6di

dj7 (51)

and

HF ( j, k)=g
F

f

Jn (imjr)
imjJ'n (imja)

, for j= k and imj =
ilj

a
, i2 =−1,

0, for j$ k.
(52)

The potential function determined by equation (50) is dependent on the displacement
vector {q} defined for each element. Therefore, as the solid shell is divided into several finite
elements, the fluid is also divided into fluid finite elements, corresponding in each case to
the solid element which surrounds it.

2.7.         

To determine the equations of fluid motion, one evaluates the kinetic energy in order
to find the corresponding mass matrix. The kinetic energy expressed in cylindrical
co-ordinates is given by equation (37).

In order to make these calculations, one assumes the kinetic energy to be the sum of
the components in three directions: axial, radial and circumferential,

Te =Tx +TR +Tu . (53)

The derivative of the potential function is given by equation (50) in terms of x permits
one to express the kinetic energy Tx as

Tx =
prF

2
{q̇}T[A−1]T g

a

0

[Hx ]T0g
1

0

{RF}{RF}T dx1[Hx ]r dr[A−1]{q̇}, (54)
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where the terms of vector {RF} and matrix [A] are given, respectively, by equations (48)
and (49). The terms of matrix [Hx ] can be written in the form

Hx ( j, k)=6Jn (imjr)/Jn (ilj ),
0,

for j= k,
for j$ k,

(55)

where mj = lj /a, lj are the roots of the characteristic equation given by equation (9),
i2 =−1 and a is the internal radius of the shell.

After integration, one can write

Tx = 1
2{q̇}T[mx ]{q̇}, (56)

where

[mx ]= prF [A−1]T[hx][A−1]. (57)

The calculation of matrix [hx] is given in Appendix A.
The same steps are followed in calculating the kinetic energy in the radial and tangential

directions, with the partial derivatives of the potential function in terms of the radius (r)
and the circumferential co-ordinate (u), respectively.

One obtains, for TR ,

TR = 1
2{q̇}T[mR ]{q̇}, (58)

where

[mR ]= prF [A−1]T[hr][A−1]. (59)

The calculation of matrix [hr] is given in Appendix A.
Finally, for Tu ,

Tu = 1
2{q̇}T[mu ]{q̇}, (60)

where

[mu ]= prF [A−1]T[hu][A−1], (61)

and matrix [hu] is given in Appendix A.
The total kinetic energy of a fluid finite element is the sum of the three components which

have just been calculated, thus

Te = 1
2{q̇}T[mx ]{q̇}+ 1

2{q̇}T[mr ]{q̇}+ 1
2{q̇}T[mu ]{q̇},

[mF ]= [mx ]+ [mr ]+ [mu ], (62)

or

Te = 1
2{q̇}T[mF ]{q̇}, (63)

where [mF ] is a symmetrical (8×8) matrix which takes into account the inertia of the fluid
element and that of the free surface.

2.8.         

The potential function f, given by equation (50), is replaced by the general equation
associated with the free surface (33), and becomes

[RF ]0[HF ][A−1]{q̈}+g[RF ]0[imj ][HF ][A−1]{q}=0. (64)
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The potential energy of the wave system, due to the height of the fluid in terms of the
mean surface, is given by Lamb [5] in the following way:

V= rFg g
a

0 g
2p

0 g
h

0

x dxr du dr. (65)

The integration in terms of x should be done between 0 and h (h being the height of
the wave) and in terms of u and r on the undisturbed surface of the fluid (see Figure 4).
By carrying out the first integration in terms of x, one finds

V=
rFg
2 g

a

0 g
2p

0

h2r du dr. (66)

By substituting the potential function f(x, r, u, t), given by equation (50), in the
equation for the height of the fluid (32) and using equation (64), one obtains the matrix
shape of h as

h=−cos nu{Hh}T[A−1]{q}, (67)

with

{Hh}T =6Jn (im1r)
J'n (im1a)

Jn (im2r)
J'n (im2a)

· · ·
Jn (im8r)
J'n (im8a)7

T

, (68)

where lj are the roots of the characteristic equation (9), i2 =−1, a is the internal radius
of the cylindrical shell and Jn is a Bessel function of the first kind of order n and J'n is its
derivative with respect to r.

One now substitutes the value of h given by equation (67) in the potential energy
equation (66) to find its matrix form:

V=
prFg

2
{q}T[A−1]T g

a

0

{Hh}{Hh}Tr dr[A−1]{q}. (69)

The result of the integral in terms of r is

[hs]=g
a

0

{Hh}{Hh}Tr dr. (70)

Making use of equation (68), the general term of matrix [hs] is given and integrated in
Appendix A.

The potential energy thus becomes

V= 1
2{q}T[kF ]{q}, (71)

where

[kF ]= prFg[A−1]T[hs][A−1]. (72)

The matrix [kF ] of equations (71) and (72) applies therefore only to the element which
contains the free surface of the fluid and is due to the motion of this surface. The vertical
displacement of the internal fluid does not contribute to the change in potential energy
because it is continually replaced by the remaining fluid of the same density.
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In general, the potential energy of any fluid element can be written as

Ve =61
2{q}T[kF ]{q},
1
2{q}T[0]{q}=0,

for e=1 (element with free surface),
for eq 1 (element without free surface).

(73)

If one wishes to ignore the change in potential energy produced by the motion of the
free surface, then [kF ] should be null. The matrix [kF ] developed in this study should not
be confused with matrix [kf ] given in reference [11].

2.8.        – 

In section 2.3, the mass and stiffness matrices of the solid shell have been found to be
symmetrical matrices with real, positive elements. Using these matrices, the kinetic and
potential energies of the solid shell (in global co-ordinates) can be expressed as

T0 = 1
2{D� }T[M0]{D� }, V0 = 1

2{D}T[K0]{D}, (74)

where [M0] and [K0] are given in reference [10].
To find the total energy of the system, one adds the kinetic and potential energies of

the solid and fluid components:

T=T0 +TF = 1
2{D� }T([M0]+ [MF ]){D� }, V=V0 +VF = 1

2{D}T([K0]+ [KF ]){D}, (75)

where [MF ] and [KF ] are the global matrices arising from [mF ] and [kF ], respectively.
Finally, the equations of motion are obtained by applying Lagrange’s equations

d/dt [1T/1q̇]+ 1V/1q=0. (76)

For solid and fluid cylinders, the following equation of motion which governs the
dynamic behaviour of the fluid–shell system is obtained:

([M0]+ [MF ]){D� }+([K0]+ [KF ]){D}= {0}, (77)

where {D}= {d1, d2, . . . , dN+1}T.
In cases where the shell is not completely free, the kinematic boundary conditions must

be taken into consideration. Thus, for a shell simply-supported at x=0 and x=L, one
must have vn =wn =0 in the displacement vectors d1 and dN+1. To account for this,
appropriate rows and columns of equation (A.20) are deleted, reducing the matrix equation
to one of order 4(N+1)−4 in the above example. In general, the order of the system
will be 4(N+1)− J, where J is the number of kinematic boundary conditions imposed.
The solution of equation (A.20) now follows by standard matrix techniques, yielding the
natural frequencies, Vi , i=1, 2, . . . , 4(N+1)− J, and the corresponding eigenvectors.

3. NUMERICAL CALCULATIONS AND DISCUSSION

Following the theory developed in the preceding sections, a computer program in
FORTRAN language was created to calculate the natural frequencies of the system formed
by the cylindrical shell and a fluid.

First, the cylindrical shell was divided into a sufficiently large number of finite elements
to have good convergence. There are two principal steps in the calculation: the first
corresponds to the calculations carried out to determine the natural frequencies of the solid
shell, and the second takes into consideration the fluid–shell interaction.

The basic data entered into the program are: the number of finite elements, the number
of circumferential modes, n, the mechanical properties of each section of the shell as a
function of Young’s modulus and Poisson’s ratio, etc., the mass density of the shell, the
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Figure 5. Analysis of convergence as a function of the number of finite elements for the clamped–free case,
n=2, L/r=5, r/t=300. m and H/L values respectively: —w—, 1, 0·5; —t—, 1, 1·0; —q—, 2, 0·5; ····e····,
2, 1·0; —r—, 3, 0·5; —.—, 3, 1·0.

geometry of the shell: average radius, thickness of the wall, length of the finite element,
the boundary conditions, the density of the fluid, and the height of the fluid in the shell.

The principal steps in the calculation of the frequencies of the solid shell in interaction
with the fluid are: the solution of the characteristic equation (9), the calculation of matrix
[A]−1 and of all other intermediate matrices, the calculation of the elementary matrices [m0]
and [k0], of an empty element, the calculation of the special Bessel functions, the
calculation of the intermediate matrices, the calculation of the elementary matrices [mF ]
and [kF ] in terms of the kinetic and potential energies, the assembly of the finite elements,
the boundary conditions, and the solution to the problem in terms of eigenvalues and
eigenvectors of the fluid–shell system.

3.1.    

The first numerical calculations were carried out to study the convergence of the solution
as a function of the number of finite elements used to model the shell partially filled with
fluid. For this purpose, a cylindrical shell with the following characteristics was used:
length L=1·524 m, average radius r=0·3048 m, thickness of the wall t=1·016 mm, ratio
L/r=5, ratio r/t=300, number of circumferential modes n=2, boundary conditions:
clamped–free.

The height of the fluid in the shell was considered for two cases: a cylindrical shell
completely filled with fluid H/L=1·00, a cylindrical partially filled with fluid H/L=0·50.

The number of finite elements varied from six to twenty-four. For the axial mode the
first seven frequencies were analysed. The results obtained are shown in Figure 5 and 6.
The seventh frequency (m=7), shows a maximum difference of 1·62% for H/L=0·50 and
of 0·90% for H/L=1·00.

Figure 5 shows that, even with six elements, the values for the three first frequencies
are stable. For the frequencies from four to seven, it can be seen in Figure 6 that stability
is achieved when sixteen or more elements are used. One can therefore state that, for twenty
elements, the values of the first seven frequencies converge towards the solution with a
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Figure 6. Analysis of convergence as a function of the number of finite elements for the clamped–free case,
n=2, L/r=5, r/t=300. m and H/L values respectively: —w—, 4, 0·5; ····e····, 4, 1·0; —q—, m 5, 0·5; —.—,
5, 1·0; —r—, 6, 0·5; —w—, 6, 1·0; —t—, 7, 0·5; —q—, 7, 1·0.

maximum deviation of 3%. Consequently, all subsequent calculations have been done
using twenty elements.

3.2.    

In order to analyse the theory developed in this work, a certain number of calculations
have been made for different cases, to correspond to published experimental results.

The geometric dimensions given in reference [24] where three cylinders, A, B and C, are
presented have been chosen and given the characteristics listed in Table 1.

The numerical results obtained by the methods outlined in this study and the theoretical
and experimental results obtained in reference [24] are given in Table 2 and in Figure 7.

To the authors’ great satisfaction, a maximum deviation of only 7% occurred between
the present theory and the results given in reference [24] while the maximum deviation
between the theory outlined in reference [24] and the experimental results in that work is
of the order of 20%. This shows that there is good agreement between the theory developed
in this work and the experimental results. An important factor in obtaining these results
has been the use of specific displacement functions, drawn directly from thin shell theory.

T 1

Data for three cylinders

Cylinder A Cylinder B Cylinder C

Circumferential mode (n) 2, 3, 4 2, 3, 4 2, 3, 4
Axial mode (m) 1 1 1
Shell mass density (r0 kg/dm3) 7·75 7·75 7·75
Shell thickness (t mm) 0·65 0·82 1·16
Internal diameter (di mm) 198 198 198
Shell length (L mm) 280·1 325·5 398·0
Fluid height (%) 50 70 80
Boundary conditions clamped–free clamped–free clamped–free
Fluid mass density (rF kg/dm3) 1·00 1·00 1·00
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T 2

Comparison between the theoretical results obtained with the present method on the one hand
and the frequencies obtained experimentally in reference [24] and the theoretical results of
Reference [24] on the other hand. Cylinders A, B, C with the characteristic geometries given

in Table 1

Deviation in terms of
Frequencies (Hz) exper. of Ref. [24] (%)

Axial Mode m=1 ZXXXXXXXCXXXXXXXV ZXXXXCXXXXV
Theory of Present Exper. of Theory of Present

Cyl. H/L n ref. [24] work ref. [24] ref. [24] work

A 0·5 2 544 495·0 490 11·02 1·02
3 319 308·6 314 1·59 1·72
4 275 277·8 276 0·36 0·65

B 0·7 2 350 312·3 298 17·45 4·80
3 218 207·7 213 2·35 2·49
4 229 240·1 247 7·29 2·79

C 0·8 2 244 218·7 203 20·20 7·73
3 196 185·4 190 3·16 2·42
4 251 290·2 296 15·20 1·96

These functions represent the real structural deformations well, and are more accurate than
polynomial functions.

The theoretical model developed here shows a relatively small margin of error. One can
therefore conclude that it fulfils the major purpose of this research: that of closely
representing experimental reality.

Figure 7. Validation of the theoretical model by a comparison of the numerical results of the present calculation
method with the experimental results of reference [24]. For cylinder A: —w—, present study; —q—, experiment
of reference [24]. For cylinder B: —r— present study; —t—, experiment of reference [24]. For cylinder, ····e····,
present study; —.—, experiment of reference [24].
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Figure 8. Comparison of theoretical frequencies between the results obtained with the present method (with
surface effects) and those of reference [11] (without surface effects) for the clamped–free case, n=2, r/t=100,
L/r=3. For m=1: —w—, present study; —q—, reference [11]. For m=2: —r—, present study; —t—,
reference [11]. For m=3: ····e····, present study, —.—, reference [11].

3.3.     

In order to determine the influence of motion of the free surface of the fluid, a
comparative analysis is made of the numerical results obtained using the theory developed
in the present study with that developed by Lakis et al. [11].

Several cylindrical shells are considered in order to provide a sufficiently large series of
results to show the effect of the free surface during the vibrations. For a wall thickness
t=1·016 mm, the geometric parameters of the shell are raised to include several
characteristic values, as follows: the radius to thickness ratio (r/t=100, 300, 600, 900), the
length to radius ratio (L/r=3, 5, 7), the level of the fluid in the shell (H/L%; 25; 50; 100),
axial modes analysed m=1, 2, . . . , 7, and circumferential modes analysed
n=2, 3, . . . , 13.

In general, one notices that the frequencies calculated by the present method are lower
than those given by Lakis et al. [11]. At the lower frequencies, the free surface effect is
approximately 1–3%, which is negligible. In contrast, this effect becomes more
pronounced, i.e., approximately 30%, in the case of the higher frequencies, m=7 (see
Figures 8 and 9 for n=2; m=1–7; L/r=3; r/t=100 and H/L=0·00–1·00).

This phenomenon is attributed to the kinetic energy developed by the free surface in
motion, which lowers the natural frequencies of the system to different levels as a function
of other initial conditions: geometrical and physical characteristics, number of axial and
circumferential modes.

The diameter of the shell also has a great influence on the vibrations of the fluid–shell
system. The effect of the free surface is stronger particularly for wide shells, where one can
see a reduction of the frequencies once there is a little fluid in the shell. The greatest
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difference is observed at approximately H/L=0·25, whilst for fluid levels from
H/L=0·50–1·00 the variations are more moderate (see Figures 8 and 9).

Another factor is the length of the shell: in this case the tendency is the opposite of the
preceding case, and one sees that the most significant deviations are to be found with the
shortest shells, that is to say when L/r=3. The higher the ratio L/r, the smaller the
difference between the two methods. Similarly, one notes that whatever the ratio L/r may
be, the smallest deviation between the frequencies occurs when the shell is full, H/L=1·00
(see Figure 10).

On the other hand, the potential energy due to the height of the waves has only a slight
bearing on frequency variation, because it can readily be seen that it is far smaller than
the strain energy of the solid shell. These conclusions are also based on a comparison of
the values of the mass and stiffness matrices that have been developed during the numerical
calculation process.

All these phenomena can be explained in terms of the theory developed in this work.
In effect, the deviation between the frequencies predicted by the two methods is explained
by the difference between the magnitudes of the kinetic energy developed on the free
surface of the fluid and the kinetic energy developed on the lateral surface. The larger the
free surface in comparison with the lateral surface surrounding the fluid, the greater its
influence. This applies with a large r/t ratio, with small L/r ratios, and with low levels of
fluid H/L.

Another influential parameter which was analysed is the number of circumferential
modes (see Figures 11 to 13). For ratios r/t=300, L/r=5 and H/L=0·50, the number
of circumferential modes was varied from 2 to 13. The notes that when the ncircumferential is

Figure 9. Comparison of theoretical frequencies between the results obtained with this method (with surface
effects) and those of reference [11] (without surface effects) for the clamped–free case, n=2, r/t=100 and
L/r=3. For m=4: —w—, present study; —q—, reference [11]. For m=5: —r—, present study; —t—,
reference [11]. For m=6; ····e····, present study; —.—, reference [11]. For m=7; —w—, present study; —q—;
reference [11].
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Figure 10. Frequency variation as a function of L/r and comparison between present study (with surface effects)
with the results given in reference [11] (without surface effects) for n=2, clamped–free case, m=3 and r/t=300.
For H/L=0·25: —w—; present study, —q—; reference [11]. For H/L=0·50: —r—; present study, —t—,
reference [11]. For H/L=0·75; ····e····, present study; —.—, reference [11]. For H/L=1·00: —w—, present
study; —q—, reference [11].

increased, there is agreement between the two methods. Starting from a very low value,
the deviation becomes slightly larger and stabilises at a maximum of 1% of difference. The
surface effect is more marked for the lower values of the number of circumferential modes
which correspond to the strain energy involved in stretching of the shell wall.

Figure 11. Frequency variation in terms of the circumferential mode and comparison with the results given
in reference [11] (without surface effects) for r/t=300, L/r=5, H/L=0·50 and clamped–free case: For m=1:
—w—, present study; —q—, reference [11]. For m=2: —r—, present study; —t—, reference [11].
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Figure 12. Frequency variation in terms of the circumferential mode and comparison with the results given
in reference [11] (without surface effects) for r/t=300, L/r=5, H/L=0·50 and clamped–free case. For m=3:
—w—, present study; —q—, reference [11]. For m=4: —r—, present study; —t—, reference [11].

The higher the number of circumferential modes, the more the strain energy of stretching
decreases and the more the bending energy increases. In contrast, the free surface seems
little influenced by bending strains at high frequencies and its effect is limited to no more
than about 1% deviation.

The change in boundary conditions has the effect of increasing the frequencies
proportionally to the other restrictions imposed. The variation in circumferential mode
from two to thirteen was calculated for the case of a shell both simply supported and
clamped–clamped and the results obtained are presented in Figures 14 and 15.

The deviation between the two methods follows the same pattern as in the case of the
clamped–free shell, with the difference that the maximums found at n=2 are slightly larger

Figure 13. Frequency variation in terms of the circumferential mode and comparison with the results given
in reference [11] (without surface effects) for r/t=300, L/r=5, H/L=0·50, clamped–free case. For m=5:
—w—, present study; —q—, reference [11]. For m=6 —r—, present study; —t—, reference [11].
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Figure 14. Frequency variation in terms of the circumferential mode and comparison with the results given
in reference [11] (without surface effects) for r/t=300; L/r=5; H/L=0·50, simply supported–simply supported
case. For m=3: —w—, present study; —q—, reference [11]. For m=4: —r—, present study; —t—, reference
[11].

Figure 15. Frequency variation in terms of the circumferential mode and comparison with the results given
in reference [11] (without surface effects) for r/t=300, L/r=5, H/L=0·50, clamped–clamped case. For m=3:
—w—, present study; —q—, reference [11]. For m=4: —r—, present study; —t—, reference [11].
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than those for the first case. However, one notes that the slight increase is proportional
to the number of restrictions imposed on the boundaries.

The deviation between the vectors which are predicted by the two methods follows the
pattern which has been observed in the case of the frequencies. The differences are small
for the first axial modes or when the ratio L/r is large (see Figures 16 and 17). However,
these differences increase with the axial mode number (Figure 18) and with the ratio r/t.

Therefore, the effect of the free surface is more pronounced: (a) for wide shells
(r/tq 300); (b) for shells having a low L/r ratio (L/rQ 5), and (c) for low values of the
number of circumferential modes n (predominant strain energy of the stretching wall). On
the other hand, the free surface effect is considerably more pronounced (variation of 30%)
for axial modes greater than 7 (mq 7). Finally the authors conclude that the natural
frequencies of the empty shells in the mode under consideration are high compared with
the natural frequencies of the free surface phenomena, at least in the lowest modes (mE 7);
accordingly, coupling between the shell modes and the liquid free surface modes is weak.
On the other hand, Lindholm et al. [1] have found experimentally that there is a possibility
of non-linear coupling between the low frequency, free surface modes, resulting in
subharmonic excitation of the former while the shell itself is oscillating at high frequencies.

Figure 16. Comparison between the normalised eigenvectors of the present method (with surface effects) and
those of Reference [11] (without surface effects) for n=2; m=2; r/t=100; L/r=3; H/L=0·50, clamped–free;
where (a) V/Vmax : —w—, present study, —q—, reference [11]; (b) W/Wmax : —r—, present study; —t— ,
reference [11]; (c) U/Umax ····e····, present study; —.—, reference [11].
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Figure 17. Comparison between the normalised eigenvectors of the present method (with surface effects) and
those of reference [11] (without surface effects) for n=2, m=4, r/t=100, L/r=3, H/L=0·50, clamped–free;
where (a) U/Umax : —w—, present study; —q—, reference [11]; (b) V/Vmax —r—, present study; —t—,
reference [11]; (c) W/Wmax ····e····, present study; —.—, reference [11].

The next step for the authors’ research is to investigate the non-linear effects of the free
surface.

4. CONCLUSION

The authors present, in this paper, a new method for the dynamic analysis of thin
cylindrical shells which takes into consideration the effects of the free surface of the fluid.
It is particularly significant that this method uses displacement functions derived from
classical thin shell theory and incorporates them into the finite element method. This has
clear advantages. Since the specific displacement functions model the displacements of the
structures better, the number of finite elements is reduced, which decreases the necessary
calculation time.

The influence of the free surface is evaluated by considering the kinetic and potential
energies which are present during vibrational motion. The numerical results calculated
using a computer program show good agreement with the experimental results of reference
[24]. The potential function found using the condition of permeability at the wall
satisfactorily models the behaviour of the fluid and of the free surface during the shell’s
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Figure 18. Comparison between the normalised eigevectors of this method (with surface effects) and those of
reference [11] (without surface effects) for n=2, m=6, r/t=100, L/r=3, H/L=0·50, clamped–free; where (a)
U/Umax : —w—, present study; —q—, reference [11]; (b) V/Vmax : —r—, present study; —t—, reference [11],
(c) W/Wmx ····e····, present study; —.—, reference [11].

vibration. This model can therefore satisfactorily predict the vibration characteristics of
orthotropic cylindrical shells partially filled with fluid.

The authors have carried out a comparative analysis of the influence of surface motion
for different geometries and different levels of fluid in cylindrical shells, in order to establish
the parameters which determine the strongest free surface oscillations. As this work is part
of a larger study on the dynamics of thin shells, the next logical step will be the assembly
of the spherical, cylindrical and conical elements developed thus far in order to produce
a geometry applicable to any shell of revolution.
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APPENDIX A: EQUATIONS

A.1.  

ex = 1U/1x, kx =−12W/1x2, eu =(1/r) 1V/1u+W/r,

ku =−(1/r2) 12W/1u2 + (1/r2) 1V/1u, exu = 1
2(1V/1x+(1/r) 1U/1u),

kxu =−(1/r) 12W/1x 1u+(3/4r) 1V/1x−(1/4r2) 1U/1u. (A.1)
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A.2. – 

Nx =D(ex + neu ), Mx =K(kx + nku ), Nu =D(eu + nex ), Mu =K(ku + nkx ),

Nxu =D(1− n)exu , Mxu =K(1− n)kxu . (A.2)

Stiffness parameters:

K=Et3/12(1− n2), D=Et/(1− n)2. (A.3)

A.3. ’       U, V  W

r2 12U
1x2 +

(1− n)
2

12U
1u2 +

r(1+ n)
2

12V
1x 1u

+ rn
1W
1x

+ k$(1− n)
8

12U
1u2 −

3(1− n)r
8

12V
1x 1u

+
(1− n)r

2
13W

1x 1u2%=0, (A.4)

(1+ n)r
2

12U
1x 1u

+
12V
1u2 +

(1− n)r2

2
12V
1x2 +

1W
1u

+ k$−3(1− n)r
8

12U
1x 1u

+
9(1− n)r2

8
12V
1x2 +

12V
1u2 −

(3− n)r2

2
12W

1x2 1u
−

13W
1u3 %=0,

(A.5)

−nr
1U
1x

−
1V
1u

−W+ k$(n−1)r
2

13U
1x 1u2 +

(3− n)r2

2
13V

1x2 1u
+

13V
1u3 − r4 14W

1x4

−2r2 14W
1x2 1u2 −

14W
1u4 %=0, (A.6)

where k=(1/12)(t/r)2.

A.4.  

Matrix [H] is

[H]= 8Aj

Bj

Cj9= &H11

H21

H31

H12

H22

H32

H13

H23

H33'8Aj

Bj

Cj9, with j=1, 2, . . . , 8. (A.7)

By expressing Aj and Bj in terms of Cj :

Ai = ajCj , Bj = bjCj , (A.8)

One obtains

$H11

H21

H12

H22%6aj

bj7=6−H13

−H237, with j=1, 2, . . . , 8. (A.9)



      203

The coefficients required to solve system (A.9) are

H11 = l2
j −(1− n/2)n2(1+ k/4), H12 = (nlj /2)$n(1+ 3

4k)+ (1− 3
4k1%,

H21 =H12, H22 =−(1− n/2)l2
j + n2(1+ k)− 9

8(1− n) kl2
j ,

H13 = nlj −(1− n/2)kljn2, H23 = n(1+ n2k)− (3− n/2)knl2
j , (A.10)

with the provision that

H11H22 −H21H12 =−(1− n/2)(l2 − n2)2 $ 0. (A.11)

A.5.  [] (8,8)

6di

dj7=[A]{C}. (A.12)

The terms for each line of matrix [A] are given by (for i=1, . . . , 8)

A(1, i)= ai , A(2, i)=1, A(3, i)= li /r, A(4, i)= bi ,

A(5, i)= ai eli1/r, A(6, i)= eli1/r, A(7, i)=
li

r
eli1/r, A(8, i)= bi eli1/r.

(A.13)

A.6.  [] (3, 8)
The terms for each line of matrix [R] are given by (i=1, . . . , 8)

R(1, i)= ai elix/r, R(2, i)= elix/r, R(3, i)= bi elix/r. (A.14)

A.7.  [] (3, 3)

[T]= &cos (nu)
0
0

0
cos (nu)

0

0
0

sin (nu)'. (A.15)

A.8.  [] (6, 8)
For i=1, . . . , 8, the terms for each line of matrix [Q] are given by

Q(1, i)= ai (li /r) elix/r, Q(2, i)= (1/r)(nbi +1) elix/r,

Q(3, i)= (1/r)(bili − nai ) elix/r, Q(4, i)=−(li /r)2 elix/r,

Q(5, i)= (1/r2)(n2 + bin ) elix/r, Q(6, i)= (1/r2)(2nli + 3
2bili + 1

2nai ) elix/r.

(A.16)

A.9.         

The total kinetic energy of a fluid finite element is given by equations (62) where the
summation of the mass matrices can be written as

[mf ]= [mx ]+ [mr ]+ [mu ]. (A.17)

Using equations (57), (58) and (61) one can write

[mf ]= pr[A−1]T([hx]+ [hr]+ [hu])[A−1]. (A.18)
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Therefore, the general term [hx]+ [hr]+ [hu] can be written as

hjk = hxjk + hrjk + hujk , (A.19)

where (1) for imj $ imk :

hjk =
arjk

J'n (ilj )J'n (ilk ) $imjJn+1(imja)Jn (imka)− imkJn (imja)Jn+1(imka)
(imj )2 − (imk )2

+ imjJn (imja)Jn−1(imka)− imkJn−1(imja)Jn (imka)/2(imj )2 − (imk )2

+ imjJn+2(imja)Jn+1(imka)− imkJn+1(imja)Jn+2(imka)/2(imj )2 − (imk )2%,

(A.20)

(2) for imj =imk :

hjk =
rjk

J'n (ilj )J'n (ilk )
a2

2
[J2

n (imka)− Jn−1(imka)Jn+1(imka)

+ [(J2
n−1(imka)− Jn−2(imka)Jn (imka)]/2+ [J2

n+1(imka)− Jn (imka)Jn+2(imka)]/2].

(A.21)

A.10.      

One wants to calculate the fluid stiffness matrix (72) where the [hs] terms can be taken
from equations (68) and (70) as follows:

hsjk =
1

J'n (ilj )J'n (ilk ) g
a

0

rJn (imjr)Jn (imkr) dr, with j, k=1, 2, . . . , 8. (A.22)

This integral is calculated using Lommel’s formulae (see Watson [25]). Therefore:
(1) for imj $ imk :

hsjk =
arjk

J'n (ilj )J'n (ilk )
imjJn+1(imja)Jn (imka)− imkJn (imja)Jn+1(imka)

(imj )2 − (imk )2 ,

(A.23)

(2) for imj =imk :

hsjk =
rjk

J'n (ilj )J'n (ilk )
a2

2
[J2

n (imka)− Jn−1(imka)Jn+1(imka)], (A.24)

where imj =ilj /a, i2 =−1, a is the internal radius of the cylindrical shell, Jn (imja) is a
Bessel function of the first type of order n and J'n (ilj ) is the derivative of Jn (imjr) with
respect to r.

APPENDIX B: LIST OF SYMBOLS

a internal radius of the shell
A1, A2 Lamé’s parameters
Aj , Bj , Cj constants defined by equations

(7) and (8)

{C} vector of the arbitrary constants
defined by equation (11)

D membrane stiffness
E Young’s modulus
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{F}e external force vector
{Fj}k , {Fi}k+1 internal force vector at node j of

element k and at node i of
element (k+1)

g acceleration of gravity
H height of fluid in the shell
{Hh} vector defined by equation (68)
Jn Bessel function of the first kind

and of order n
ki virtual parts of li

K bending stiffness
l length of a finite element
L length of the shell
M1, M2, M�12 resultant bending stresses
Mx , Mu , M�xu resultant bending stresses in

cylindrical co-ordinates
N number of finite elements
N1, N2, N�12 resultant membrane stresses
Nx , Nu , N�xu resultant membrane stresses in

cylindrical co-ordinates
n number of circumferential

modes
Q1, Q2 resultant shear stresses
Qx , Qu resultant shear stresses in cylin-

drical co-ordinates
displacement vector, in local
co-ordinates, at nodes i and j of{q}=6di

dj7 the finite element
{q}e displacement vector of element

e
r average shell radius in

equations (1–24); r also indi-
cates the radial direction of the
cylinder in equations (26–72)

R1, R2 radii of curvature of the mean
surface

{RF} matrix defined by equation (49)
t thickness of the shell wall; t also

indicates ‘‘time’’ in the continu-
ity equation

U axial displacement
V circumferential displacement
W radial displacement
x axial co-ordinate
Yn Bessel function of the second

kind and of order n
ai , bi defined by equation (10)
di , dj ensemble of the four displace-

ments of each node, defined by
equations (13) and (14)

{d} displacement vector in global
co-ordinates

{e} deformation vector defined by
equation (17)

{s} stress vector defined by
equation (18)

f function of velocity potential
mi imaginary parts of li

h height of the wave
ji , j2 co-ordinates of the mean sur-

face
u circumferential co-ordinate
v natural frequency
n Poisson’s ratio
r density of the shell
rF density of the fluid

MATRICES

[A] matrix defined by equation (14)
[B] matrix defined by equation (17)
[H] matrix defined by equation (8)
[HF ] matrix defined by equation (52)
[Hx ] matrix defined by equation (55)
[hr] matrix defined by equation

(A.18)
[hs] matrix defined by equation (70)
[hx] matrix defined by equation

(A.18)
[hu] matrix defined by equation

(A.18)
[k0] matrix defined by equation (22)
[kF ] matrix defined by equation (72)
[K0] stiffness matrix for the whole

shell
[KF] stiffness matrix for the whole

fluid
[m0] matrix defined by equation (23)
[mF ] matrix defined by equation (62)
[mR ] matrix defined by equation (59)
[mx ] matrix defined by equation (59)
[mu ] matrix defined by equation (61)
[M0] mass matrix for the whole

shell
[MF ] mass matrix for the whole

fluid
[N] matrix defined by equation (16)
[P] matrix defined by equation (19)
[Q] matrix defined by equation (17)
[R] matrix defined by equation (11)
[T] matrix defined by equation (11)


